Formación de la actividad cognitiva de los estudiantes universitarios técnicos utilizando elementos del aprendizaje combinado en el estudio de la física cuántica

Autores/as

  • Diana Arkad`evna Denisova Moscow State University of Food Production, Moscow, Russian Federation.
  • Natalia Gennadyevna Levanova Togliatti State University, Togliatti, Russian Federation.
  • Irina Vladimirovna Evgrafova State Marine Technical University of St. Petersburg, St. Petersburg, Russian Federation.
  • Alexander Sergeyevich Verkhovod Moscow Aviation Institute, Moscow, Russian Federation.

DOI:

https://doi.org/10.20952/revtee.v14i33.15296

Palabras clave:

Aprendizaje electrónico, Aprendizaje tradicional, Conferencia, Nivel de actividad cognitiva, Estudiantes

Resumen

El estudio tiene como objetivo analizar la conveniencia de utilizar las capacidades de LMS Moodle para la implementación del aprendizaje mixto en física en una universidad técnica en el estudio de la física cuántica. Se analizan las oportunidades que presenta el entorno online de Moodle. Está demostrado que el aprendizaje en línea combinado con el aprendizaje en persona mejora en gran medida los resultados del aprendizaje. Se describe un instrumento para el e-learning en física cuántica en el entorno Moodle y se determinan sus capacidades educativas. El artículo examina el método de creación de modelos informáticos con Easy Gif Animator. El modelado se examina como un medio para promover la formación de la actividad cognitiva de los estudiantes. El uso de modelos y experimentos mentales contribuye a mejorar la comprensión de los estudiantes de las teorías y los experimentos de la vida real en física. Los resultados del estudio apoyan la hipótesis de que la introducción de un componente de aprendizaje electrónico en la enseñanza de la física cuántica aumentará los niveles de actividad cognitiva de los estudiantes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diana Arkad`evna Denisova, Moscow State University of Food Production, Moscow, Russian Federation.

Natalia Gennadyevna Levanova, Togliatti State University, Togliatti, Russian Federation.

Irina Vladimirovna Evgrafova, State Marine Technical University of St. Petersburg, St. Petersburg, Russian Federation.

Alexander Sergeyevich Verkhovod, Moscow Aviation Institute, Moscow, Russian Federation.

Citas

Alexander, B. (2006). Web 2.0: A new wave of innovation for teaching and learning? Educause Review, 41, 32-44.

Araujo, A., & Silva, I. P. (2020). Maker culture and educational robotics in physics teaching: developing an automated traffic light in high school. Journal of Research and Knowledge Spreading, 1(1), e11654.

Boelens, R., Voet, M., & De Wever, B. (2018). The design of blended learning in response to student diversity in higher education: Instructors’ views and use of differentiated instruction in blended learning. Computers & Education, 120, 197-212. https://doi.org/10.1016/j.compedu.2018.02.009

Bowyer, J., & Chambers, L. (2017). Evaluating blended learning: Bringing the elements together. Research Matters: A Cambridge Assessment publication, 23, 17-26.

Cracker, D. (2006). Attitudes towards science of Students enrolled in Introductory Level Science Courses UW-L. Journal of Undergraduate Research, IX, 1-6.

Dangwal, K. L. (2017). Blended Learning: An Innovative Approach. Universal Journal of Educational Research, 5(1), 129-136. https://doi.org/10.13189/ujer.2017.050116

De George-Walker, L., & Keeffe, M. (2010). Self-determined blended learning: A case study of blended learning design. Higher Education Research & Development, 29(1), 1-13. https://doi.org/10.1080/07294360903277380

Demirer, V., & Sahin, I. (2013). Effect of blended learning environment on transfer of learning: An experimental study. The Journal of Computer Assisted Learning, 29, 518–529. https://doi.org/10.1111/jcal.12009

Dudin, M. N., Bezbakh, V. V., Galkina, M. V., Rusakova, E. P., & Zinkovsky, S. B. (2019). Stimulating Innovation Activity in Enterprises within the Metallurgical Sector: the Russian and International Experience. TEM Journal-Technology Education Management Informatics, 8(4), 1366-1370. https://doi.org/10.18421/TEM84-38

Dudin, M. N., & Shishalova, Yu. S. (2019). Development of Effective Education and Training System in the Context of the Transition to International Accreditation. European Journal of Contemporary Education, 8(1), 118-127. https://doi.org/10.13187/EJCED.2019.1.118

Engelbertink, M. M. J., Kelders, S. M., Woudt-Mittendorff, K. M., & Westerhof, G. J. (2020). Participatory design of persuasive technology in a blended learning course: A qualitative study. The Journal of Education and Information Technologies, 25(5), 4115-4138. https://doi.org/10.1007/s10639-020-10147-x

Eryilmaz, A., Yildiz, I., & Akin, S. (2011). Investigating of Relationship between Attitudes towards Physics Laboratories, Motivation and Amotivation for the Class Engagement. Eurasian Journal of Physics and Chemistry Education, Jan.(Special), 59-64.

Evans, J. C., Yip, H., Chan, K., Armatas, C., & Tse, A. (2019). Blended learning in higher education: professional development in a Hong Kong university. Higher Education Research and Development, 39(4), 1-14. https://doi.org/10.1080/07294360.2019.1685943

Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95-105. https://doi.org/10.1016/j.iheduc.2004.02.001

Graham, C. R. (2006). Blended Learning Systems: Definition, Current Trends, and Future Directions. In: Bonk, C. J., Graham, Ch. R. (Eds.). The Handbook of Blended Learning: Global Perspectives, Local Designs. San Francisco: Pfeiffer Publ., pp. 3–21.

Guido, R. M. D. (2013). Attitude and Motivation towards Learning Physics. International Journal of Engineering Research & Technology, 2(11), 2087-2094.

Henze, I., Van Driel, J., & Verloop, N. (2007). The change of science teachers’ personal knowledge about teaching models and modelling in the context of science education reform. International Journal of Science Education, 29(15), 1819–1846. https://doi.org/10.1080/09500690601052628

Hughes, R. I. G. (1997). Models and Representation. Philosophy of Science, 64, 325-336. https://doi.org/10.1086/392611

Jeffrey, L. M., Milne, J., Suddaby, G., & Higgins, A. (2014). Blended learning: How teachers balance the blend of online and classroom components. Journal of Information Technology Education: Research, 13, 121-140. https://doi.org/10.28945/1968

Judrups, J. (2015). Analysis of knowledge management and e-learning integration models. Procedia Computer Science, 43, 154-162. https://doi.org/10.1016/j.procs.2014.12.021

Justi, R. S., & Gilbert, J. K. (2002). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273–1292. https://doi.org/10.1080/09500690210163198

Kim, K. - J., Bonk, C. J., & Oh, E. J. (2008). The Present and Future State of Blended Learning in Workplace Learning Settings in the United States. Performance Improvement, 47(8), 5-16. https://doi.org/10.1002/pfi.20018

Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32. https://doi.org/10.1002/sce.20240

Launer, R. (2010). Five assumptions on blended learning: What is important to make blended learning a successful concept? In: Tsang, P., Cheung, S. K. S., Lee, V.
S. K., Huang, R. (Eds.). Hybrid Learning. ICHL 2010. Lecture Notes in Computer Science, vol. 6248. Berlin, Heidelberg: Springer, pp. 9-15. https://doi.org/10.1007/978-3-642-14657-2_2

Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635–679. https://doi.org/10.3102/00028312041003635

Levy, Y. (2007). Comparing dropouts and persistence in e-learning courses. Computers & Education, 48(2), 185-204. https://doi.org/10.1016/j.compedu.2004.12.004

Lim, C. P., & Wang, L. (2017). Blended learning for quality higher education: selected case studies on implementation from Asia-Pacific. Bangkok: UNESCO Bangkok Office, 314 p.

Lowe, D. (2013). Roadmap of a blended learning model for online faculty development. Invited feature article in Distance Education Report, 17(6), 1-7.

Ma, C. - M., Chao, C. - M., & Cheng, B. - W. (2013). Integrating Technology Acceptance Model and Task-technology Fit into Blended E-learning System. Journal of Applied Sciences, 13(5), 736–742. https://doi.org/10.3923/jas.2013.736.742

Mansvelt, J., Suddaby, G., O'Hara, D., & Gilbert, A. (2009). Professional development: Assuring quality in e-learning policy and practice. Quality Assurance in Education, 17(3), 233-249. https://doi.org/10.1108/09684880910970641

Means, B., Toyama, Y., Murphy, R., & Baki, M. (2013). The effectiveness of online and blended learning: A meta-analysis of the empirical literature. Teachers College Record, 115(3), 1-47.

Morrison, M. (1998). Modelling Nature: Between Physics and the Physical World. Philosophia Naturalis, 35, 65-85.

Moskal, P., Dziuban, C., & Hartman, J. (2013). Blended learning: A dangerous idea? The Internet and Higher Education, 18, 15–23. https://doi.org/10.1016/j.iheduc.2012.12.001

Napier, N., Dekhane, S., & Smith, S. (2011). Transitioning to blended learning: Understanding student and faculty perceptions. Journal of Asychronous Online Learning, 15(1), 20-32. https://doi.org/10.24059/olj.v15i1.188

Oproiu, G. C. (2015). A Study about Using E-learning Platform (Moodle) in Univeristy Teaching Process. Procedia-Social and Behavioral Sciences, 180, 426-432. https://doi.org/10.1016/j.sbspro.2015.02.140

Osguthorpe, R. T., & Graham, C. R. (2003). Blended learning environments: Definitions and directions. The Quarterly Review of Distance Education, 4(3), 227-233.

Oliveira, A. M., Gerevini, A. M., & Strohschoen, A. A. G. (2017). Diário de bordo: uma ferramenta metodológica para o desenvolvimento da alfabetização científica. Revista Tempos e Espaços em Educação, 10(22), 119-132.

Pavel, A. P., Fruth, A., & Neacsu, M. N. (2015). ICT and E-Learning: Catalysts for Innovation and Quality in Higher Education. Procedia Economics and Finance, 23, 704–711. https://doi.org/10.1016/s2212-5671(15)00409-8

Picciano, A. G. (2009). Blending with purpose: The multimodal model. Journal of Asynchronous Learning Networks, 13(1), 7–18. https://doi.org/10.24059/olj.v13i1.1673

Poon, J. (2013). Blended learning: An institutional approach for enhancing students' learning experiences. Journal of Online Learning and Teaching, 9(2), 271-288.
Rooney, J. E. (2003). Blending learning opportunities to enhance educational programming and meetings. Association Management, 55(5), 26-32.

Rovai, A. P., & Jordan, H. M. (2004). Blended learning and sense of community: A comparative analysis with traditional and fully online graduate courses. International Review of Research in Open and Distance Learning, 5(2), 1-13. https://doi.org/10.19173/irrodl.v5i2.192

Rodrigues, B. M., Santos, J. E. B., & Vasconcelos, C. A. (2020). Conceptions of undergraduate students in Chemistry on the use of interactive interfaces in and for the activities developed in the distance course. Journal of Research and Knowledge Spreading, 1(1), e11649.

Sanchez, R. A., & Hueros, A. D. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior, 26(6), 1632-1640. https://doi.org/10.1016/j.chb.2010.06.011

Sarmadi, M. R., Farajollahi, M., Saeidipour, B., & Ahmadifar, M. (2016). The impact of lecturers' thinking styles on students' creativity in distance higher education. The Turkish Online Journal of Distance Education, 17(4), 105-117. https://doi.org/10.17718/tojde.87234

Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205. https://doi.org/10.1207/s1532690xci2302_1

Selwyn, N. (2007). The use of computer technology in university teaching and learning: A critical perspective. Journal of Computer Assisted Learning, 23(2), 83-94. https://doi.org/10.1111/j.1365-2729.2006.00204.x

Shan, J. (2012). Design of an Online Learning Platform with Moodle. In: The 7th International Conference on Computer Science & Education (ICCSE 2012), Melbourne, Australia, pp. 1710-1714. https://doi.org/10.1109/ICCSE.2012.6295395

Shaw, L., & Kennepohl, D. (2013). Student and faculty outcomes of undergraduate science research projects by geographically dispersed students. International Review of Research in Open and Distributed Learning, 14(5), 69-81. https://doi.org/10.19173/irrodl.v14i5.1551

Santos, J. E. B. (2020). Cartographic narratives: the teaching of mathematics and ICT. Journal of Research and Knowledge Spreading, 1(1), e11645

Snir, J., Smith, C. L., & Raz, G. (2003). Linking phenomena with competing underlying models: A software tool for introducing students to the particulate model of matter. Science Education, 87(6), 794–830. https://doi.org/10.1002/sce.10069

Stockwell, B. R., Stockwell, M. S., Cennamo, M., & Jiang, E. (2015). Blended Learning Improves Science Education. Cell, 162(5), 933–936. https://doi.org/10.1016/j.cell.2015.08.009

Swenson, P. W., & Redmond, P. A. (2009). Online, hybrid, and blended coursework and the practice of technology-integrated teaching and learning within teacher education. Issues in Teacher Education, 18(2), 3-10.

Tynan, B., Ryan, Y., & Lamont-Mills, A. (2015). Examining workload models in online and blended teaching. British Journal of Educational Technology, 46(1), 5-15. https://doi.org/10.1111/bjet.12111

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. https://doi.org/10.1002/sce.20259

Woods, R., Baker, J. D., & Hopper, D. (2004). Hybrid structures: Faculty use and perception of web-based courseware as a supplement to face-to-face instruction. Internet and Higher Education, 7(4), 281-297. https://doi.org/10.1016/j.iheduc.2004.09.002

Publicado

2021-02-27

Cómo citar

Denisova, D. A., Levanova, N. G., Evgrafova, I. V., & Verkhovod, A. S. (2021). Formación de la actividad cognitiva de los estudiantes universitarios técnicos utilizando elementos del aprendizaje combinado en el estudio de la física cuántica. Revista Tempos E Espaços Em Educação, 14(33), e15296. https://doi.org/10.20952/revtee.v14i33.15296

Número

Sección

Publicação Contínua

Artículos similares

También puede {advancedSearchLink} para este artículo.