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Abstract

This note makes an attempt to point out some of the familiar situations occurring in
early number theory lessons.
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1 Introduction

(i) The set of natural numbers contains 1,2,3,4,...; the positive integers used for
counting. This set is denoted by Z*.

(ii) A natural number > 1 is either a prime or a product of prime numbers. An
element m € Z* is uniquely expressible as

m=pi-pyt .y (1.1)
where pq, po, . .. p, are distinct primes.

(iii) By a prime p, one means that given a,b € Z", p divides ab implies that either p | a
or p | borp| b, where | means 'divides’. (1.1) is refereed to as the prime-power
decomposition of m > 1.

(iv) In (1.1), the prime-power decomposition of m contains a prime factor p which is
least among the primes dividing n. That is, every integer n has a least prime
divisor.

(v) The set Z* of positive integers forms a semi-group under multiplication.
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By adding 0 and negative integers to Z™, one gets the set Z of all integers (positive,
negative and zero). It is verified that (Z,+,-) forms a commutative ring with
identity (or unity) element 1. That is, 1 -a =a-1 = a, for a € Z.

The formal definition of a ring R is the following:

A ring R is an ordered triple (R, +,-) consisting of a nonempty set R and two
binary operations + and - defined on R such that

(a) (R,+) is an abelian group.

(b) (R,-) is a semi-group and

(c) the operation (+) is distributive (on both sides) over the operation (+).

Definition 1.1. A commutative ring R is a ring (R, +, ) in which multiplication
15 commutative: that is, for all a,b € R a-b=0b-a. It also means that the elements
a,b are commutative.

Given a ring (R, +,-), 0 # a € R is called a left (right) zero divisor if there exists
b(# 0) € R such that a-b =0 (b-a = 0). Further, a zero divisor of (R, +,") is
either a left or right zero divisor.

A ring R is without zero divisors if, and only if, R satisfies the cancellation laws
for multiplication. That is, for all a,b € R, a-b = a-c and b-a = ¢ - a(where
a # 0) imply that b = c.

Definition 1.2. A commutative ring is an integral domain if, and only if, it has
no zero divisors.

Definition 1.3. Let I be a non empty subset of a ring R, I is called a two-sided
ideal of k if, and only if,

(i) fora,b eI, one hasa—be I and
(ii) for r € R and a € I, the conclusion: ar € I,ra € I holds.

Let (R,+,-) be a commutative ring with unity. 1g. (R,+,-) is called ‘simple’ if
it has no non-trial ideals.
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(xiv) Let (R, +,-) be a commutative ring with unity. (R, +, ) is called a principal ideal
ring if every ideal of (R,+,-) is a principal ideal, that is, an ideal generated by
a single element. A principal ideal ring which is an integral domain is termed a
principal ideal domain (P.I.D).

(xv)

Definition 1.4. Let R be a commutative ring with unity 1z. An ideal I of the
ring R is said to be a mazximal ideal provided that I # R and whenever J is an
ideal of R with I C J C R, then J = R.

That is, the only ideal to contain a maximal ideal properly is the ring itself.
(xvi)
Notation. (I,a) denotes the ideal (of R) generated by the set I U {a}.

Theorem 1.5. [1] R denotes a commutative ring with unity 1g. An ideal I of R is a
mazimal ideal if, and only if, (I,a) = R for any a ¢ I.

Demonstrac¢ao. The first observation is that (I, a) satisfies
Ic(l,a)CR

If I where a maximal ideal of R, it would mean that (/,a) = R.
Conversely, suppose that J is an ideal of R, with the property that I C J C R. If
a € Jand a # I, one would get I C (/,a) C J. The requirement that (/,a) = R would
force J = R. Then, it follows that [ is a maximal ideal.
]

Next, let R be a commutative ring with unity 1.
Theorem 1.6. [la| Let {I;} be a collection of ideals of R. Then NI; is an ideal of R.

Demonstracao. The intersection N/; is non-empty, since each [; contains the zero ele-
ment of the ring. Let a,b € NI; and r € R. As each [; is an ideal, a — b, ra, ar all lie in
1;. This is true for every value of I;. So, a — b,ra,ar all belong to NI; making NI; an
ideal of R. m

Given a commutative ring R with unity 1g, let S be a nonempty subset of R. The
symbol () is used to denote

(S)=n{I:S C1I:1I anideal of R}
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The collection of all ideals which contain S is nonempty, since R itself is an ideal of R.
By virtue of theorem 1.6, (S) forms an ideal and (S) C I. Further, (S) is the smallest
ideal of R containing S.

If S consists of a finite number of elements say aq,as,...,a, the ideal is said to
be finitely generated with a;(i = 1,...n) as its generators. An ideal (a) generated by
a € R is called a principal ideal. The ring Z of integers is finitely generated and is
generated by 1.

Theorem 1.7. [1b| Let R be a commutative ring with unity 1r. If R is finitely gene-
rated, each proper ideal of R is contained in a maximal ideal.

Demonstracao. Suppose that R is finitely generated by the elements aq, as, . ..a,. One
defines
A={J:1CJ, where J is a proper ideal of R}

A is nonempty, as I belongs to A
A chain {I;} of ideals in A is introduced.

Claim. UI; is again a member of A

The method of proof is as follows :

Let a,b € Ul; and r € R. Then there exists indices I and J for which a € I;, b € I;.
As the collection {I;} forms a chain of ideals either I; C I; or I; C I;. For definiteness,
suppose that I; C I;. Let a,b € I;. Then, a — b € I; C UI;. Also, the products ar and
ra € I, C UI;. It follows that UI; is an ideal of R.

Claim. UI; is a proper ideal of R.

Suppose the contrary. Then, Ul; = R = (ay,as,...,a,), the ideal generated by
ay,...,an, since R is a finitely generated ring. Then, each generator a; would belong
to I, of the chain {/;}. As there are only finitely many I;, , one contains all others. Let
It be marked I;. It follows that I;; = R, which is impossible. Further, I C UI;. The
conclusion is that

Ul; € A.

Appealing to Zorn’s Lemma [lc|, the family A contains a maximal element M. Tt
follows from the definition of A that M is a proper ideal of R with I C M.

Claim. M is a mazimal ideal of R.

Let J be an ideal for which M C J C R. Since M is a maximal element of the family
A, J cannot belong to A. Then, J is an improper ideal and so J = R. The conclusion
is that M is a maximal ideal of R and this statement completes the proof. O
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Theorem 1.8 (Krull-Zorn Theorem). [1d| In a ring R with unity 1, each proper ideal
15 contained in a mazimal ideal.

Remark 1. In the ring Z of integers, every ideal is contained in a maximal ideal. But
the mazimal ideals of Z are the ideals generated by primes. In other words, given an
integer n(> 1) € Z, there exists a smallest prime p which divides n.

2 Simple rings

A ring which is not commutative is considered. Let R denote the field of real numbers.
M, (R) denotes the set of n x n matrices with entries from Ix (n > 1). As a notational
device, one writes E;; to denote an n x n matrix whose (4, j)th entry is 1 where j =1
and zeros elsewhere. It is verified that M, (R) is a non-commutative ring with identity

element [d;;] where
1. j — ,L'.
=4 ’ 2.1
! {0; otherwise. (2.1)

Suppose that I # [0] is an ideal of M, (R). Then I will contain some nonzero matrix
la;;] (say) with an rsth entry a,, # 0. Since I is a two-sided ideal of M, (R), the
product

E,, [bij] [aij] Ess

belongs to I where the matrix [b;;] is chosen to have the element a,,! down its main
diagonal and zeros elsewhere. As a result of all the zero entries in the various factors ,
it is easy to check that this product is equal to E,;. Knowing this, the relation

Eij - EirErsEsj(ivj - 1a 27 .- )

implies that all the n? of the matrices FE;; are contained in I. Grasping firmly the
situation, one notes that the identity matrix [d;;] where

L Jg=uy
0ij .
0; otherwise.

could be written as
0] = Ei + Erg+ -+ By (*)

(*) leads to the conclusion that [0;;] € 1.
Observing that in a ring with identity, no proper (right , left or two-sided) ideal I
contains the identity element,

I = M,(R).
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In other words, M, (R) possesses no nonzero proper ideals and thus M, (R) is a simple
ring [le].

3 Semi-simple Rings

A property of the set of positive integers is a fact that the set N of positive integers has
an infinite number of primes. The necessary ground-work has to be provided.
Let R be a commutative ring with unity:.

Definition 3.1. An ideal I of the ring R is said to be a maximal ideal if I # R and J
18 an ideal of R with I C J C R, then J = R.

Theorem 3.2. In the ring Z of integers, maximal ideals correspond to those generated
by primes.

Demonstragao. It is noted that Z is a principal ideal domain (PID). That is to say that
every ideal of Z is generated by an integer n(n > 0). As Z has no divisors of zero, Z
is an integral domain in which every ideal is principal. Z is an example of a principal
ideal domain (PID). O

It is known [1f] that if R is a finitely generated ring, then each ideal or R is contained
in a maximal ideal.

Definition 3.3. An ideal I of R (a commutative ring with unity) is called a prime ideal
if for all a,b € R, ab € I implies that either a € I orb € I.

This is the analogue of the result stated below.

In the set N of positive integers, if p is a prime dividing ab (where a, b are positive
integers), p divides ab implies either p divides a or p divides b.

It is noted that in a commutative ring with identity, every maximal ideal is a prime
ideal.

Definition 3.4. The Jacobson radical of a commutative ring R with unity denoted by
J(R) is the set
J(R) =n{M | M is a mazimal ideal of R}

If J(R) = {0}, R is said to be a ring without Jacobson radical or R is a semi simple
Ting.
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To show that the ring Z of integers is semi-simple the first observation is that the
maximal ideals of Z correspond to prime numbers.

It is noted that (Z,+,-) is an integral domain in which every ideal is principal.
That is, (Z,+, -) is a principal ideal domain (PID). Further, in (Z, +, -) maximal ideals
correspond to prime numbers, the ideal generated by n (a positive integer) is a prime
ideal if and only if n is a prime. Further, in (Z, +,-) prime ideals are maximal ideals.
Moreover, prime ideals of (Z, +, -) are generated by prime p. So, according to definition
3.4 one notes that the Jacobson radical of Z is given by

J(Z) =n{(p) : p, a prime} (3.1)

Since no number is divisible by every prime, one concludes that J(Z) = (0). Thus, Z
is a semi-simple ring|lg].

Theorem 3.5. [1h] Let R be a principal ideal domain. Then, R is semi-simple if, and
only if, R is either a field or has an infinite number of maximal ideals.

Demonstra¢ao. As R is a PID, R has a set of prime elements. Let {p;} be the set of
primes of R. This is generated by the fact that as R is a PID, a nontrivial ideal (p),
generated by a prime p is such that (p) is a maximal ideal (and so a prime ideal) if,
and only if, p is an irreducible (prime) element of R [1j]. So, the maximal ideals of
R are,simply, the principal ideals (p). So, an element a (belonging to R) becomes an
element of J(R) [li], the Jacobson radical of R if, and only if, a is divisible by each
prime p;. So, a € J(R) if and only if, a is divisible by each prime p;. If R has an infinite
number of maximal ideals, then a = 0, since every non-zero non invertible element of R
is uniquely representable as a finite product of primes. So, R is a PID = the Jacobson
radical of R is (0) or R is semi simple.
In the opposite direction, suppose that R has only a finite number of primes
D1, P2, - - -, Pn, then
J(R) =Npi = (p1,p2,- .-, pp) # (0)

a contradiction to the hypothesis that J(R) = 0. O

Finally, one notes that if the set {p;} is empty, then each nonzero element of R is
invertible and so, then, R is a field in which case rad R = {0}.

Corollary 3.6 (An Important Corollary). The ring of integers Z has an infinite num-
bers of maximal ideals which are generated by primes, thus, giving an algebraic proof of
FEuclid’s theorem.
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4 Euclidean Rings [2]

Definition 4.1. An integral domain D is said to be a Euclidean ring if, for every a # 0
in D there is defined a non negative integer d(a) such that

(i) for all a,b,€ D both nonzero d(a) < d(ab),

(ii) for all a,b, € D both nonzero there exist s,t € D such that a = sb+t where either
=0 ord(t) <d(s).

Note: d(0) is not defined.

The set Z of integers serves as an example. The condition (ii) resembles the division
algorithm in the integral domain Z which says:

If a,b € Z with b # 0 there exist integers ¢ and r such that a = bg + r where either
r=0or0<r<lb.

The concept of a Euclidean ring is a generalization of the integral domain 7Z of
integers.

Theorem 4.2. Given an FEuclidean ring D, suppose that A is an ideal of D. Then,
there exists an element ag € A such that A consists of elements agd where d € D.

If A is the zero ideal, one has to take ay = Op and the conclusion of the theorem
holds trivially.

When A # (0), there exists ag # 0 and ag € A. Pick ag such that d(ag) is minimal.
This is possible since d takes on non-negative integer values.

Suppose that a € A. As D is a Euclidean domain, there exist ¢, € D such that
a = tag +r where r = 0 or d(r) < d(ap). Since ay € A and A is an ideal of D, tay € A.
But, r = a — tap. This implies that » € A and r is such that d(r) < d(ap). This
contradicts the minimality of d(ag). So, r = 0. Thus, a = tay So, every element of A
is a multiple of ag, proving that A is a principal ideal of D, or D is a principal ideal
domain.

Notation. Let D be a principal ideal domain. If a € D, principal ideal of D, generated
by a € D is denoted by (a). That is, (a) = {za: x € D}.

Remark 2. The conclusion of theorem 4.2 is that every ideal of a FEuclidean domain is
principal. In other words, a Euclidean domain s a principal ideal domain, abbreviated
as PID. Howewver, there exist principal ideal domains that are not Euclidean domains.

See T. Motzkin [3]

Remark 3. A FEuclidean domain D possess a unit element.
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The reason is that as D is a PID and so D, itself is a principal ideal of D. One
writes D = (ng) for aome ny € D. So every element of D is a multiple of ng € D.
Therefore, ng = nge for some e € D. If a € D, then a = bng for some b € D. Then,

ae = (bng)e = b(nga) = bng = a.

As the Euclidean domain is commutative, e serves as the required unit element.

4.1 Divisibility Properties

Definition 4.3. Let R be a commutative ring with unity 1r. Suppose a # 0 and b
are elements of R. One says that a divides b which is, symbolically, expressed as a | b.
When a does not divide b one writes a1 b. It follows that

1. Ifa|bandb|c, then a| c.
2. ifalbanda|c, thena| (b+c).
3. Ifa|b, then a | be for all ¢ € R.

Definition 4.4. Let R be a commutative ring with unity. Given a,b € R, an element
d in R is called the greatest common divisor (g.c.d) of a and b, if

1.d|laandd|b

2. whenever c(€ R) is such that ¢ | a and c | b, then c | d.
Remark 4. The notation d = (a,b) is used to denote the g.c.d of a and b.

Theorem 4.5. Given a Fuclidean ring D, any two elements a,b of D have a greatest
common divisor g. Moreover, g = xa + yb for some x,y € D.

Demonstragao. Let A be the set of elements of the form ka + [b where k,[ vary over
the elements of D.

Claim. A is an ideal of D

Since A is the set of elements of the form ka + b, suppose that sa + tb € A, for
some s,t € D.
m = k1a+llb, n = k?g(l—f—lgb.

Then, m £ n = (ky £ ka)a + (I; £ 13)b € A. Similarly, for any r € D,

rm = r(kia + [;b)
= (r(k1)a+ (rl))b € A.
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Since A is an ideal of D, by theorem 4.2 there exists an element ay € A such that every
element in A is a multiple of ag. Since ay € A and every element of A is of the form
sa + b,

ag = s1a + t1b for some s1t; € D

By remark (3) D has a unit element say 1p. Then,
alea+0Db€A; b=0pa—+1pb e A. (**)

As a and b are elements of A by (**), one has ag | a, ag | b.

Lastly, suppose that ¢ € D is such that ¢ | a and ¢ | b then ¢ | sja + t1b = ao.
Therefore, ag satisfies the conditions for a being the g.c.d of a and b. In other words, any
two elements a, b in D have a greatest common divisor g which is a linear combination

of a and b. O

Definition 4.6. Let D be an integral domain with unit element 1p. An element a € D
is a unit in D if there exists an element b € D such that ab = 1p.

Theorem 4.7. Suppose that a,b € D are such that a | b and b | a hold. Then, a = ub
where u s a unit in R.

Demonstragao. Since a | b, one could writeb = sa for some s € D. Since b | a, a = tb
for some t € D. Then, b = sa = s(tb) = (st)b. As a,b belong to an integral domain,
canceling b from b = (st)b one gets st = 1p. Or, s is a unit in D and ¢ is a unit in D
and so a = ub where u is a unit. ]

Definition 4.8. Let D be an integral domain with unit element. Two elements a,b C D
are said to be associates if b = na for some unit n in D.

It is verified that in a Euclidean ring D with unity 1p two greatest common divisors
of two given elements of D are associates.

Theorem 4.9. Let D be a Euclidean ring having elements a,b (say). If b is not a unit
in D, then d(a) < d(ab).

Demonstragao. Consider the ideal A = (a) = {za : z € D} of D. By the property of a
Euclidean ring, d(a) < d(za) for 0 # X € D. That is, the d-value of a is the minimum
among d-values of elements of A. Suppose that ab € A. If d(ab) = d(a), it could be
deduced that the d-value of ab is, also, minimal and every element in A is a multiple of
ab. It follows that a = abs for some s € D. As D is an integral domain, cancellation
law allows one to conclude that bs = 1p. that is to say b is a unit in D, contrary to the
assumption that b is not a unit. The conclusion is that d(a) < d(ab). O
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Definition 4.10. In a Euclidean ring D, a non-unit @ s called a prime element of D
whenever m = ab, where a,b € D, either a or b is a unit.

Theorem 4.11. Let D be a Fuclidean ring. Then, every element of D s either a unit
in D or can be written as a product of prime elements of D.

Demonstracao. Given a € D, proof is by induction d(a). If d(a) = d(1p), then a is a
unit in D and so the first part of the theorem holds.
It is assumed that the theorem is true for all elements x in D such that d(z) < d(a).
The approach is to show that the theorem is true for a, also, by mathematical induction.
If a is a prime in D, the conclusion of the theorem is obvious. Suppose that a s not
a prime in D. Then, a could be displayed as a = bc where neither b nor ¢ is a unit in
D. By theorem 4.9,

d(b) < d(bc) = d(a)
and d(c) < d(bc) = d(a).

By introduction hypothesis, b and ¢ could be written as products of a finite number of
prime elements of D. That is,

b= Ty ...,y C=T] " Ty... T
where m;, 7i(i = 1,2,...,n ;5 = 1,2,...,m) are prime elements of D. So, then, a =
bc=m mg-... My T -Th-... . Or , ais capable of factorization into prime elements
of D. This concludes the proof. O

Example 4.12. The ring 7 of integers, being a Fuclidean domain, is a unique fatori-
zation domain.

General Notions Occurring in Number Theory
N1 The number of primes is infinite.
N2 Let p be a prime and a, b given integers. If p | ab, then either p | a or p | b.
N3 Any two integers have a g.c.d
N4 Given an integer n. n has the prime factorization
n=pi'py*...ppF (a; >0,i=1,2,... k)

and pq, pa, ..., pr are distinct primes.

That is, unique factorization theorem holds for the set of integers

N5 Given an integer n, one could find out the least prime p dividing n
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General Notions Occurring in Algebra

Let R be a principal ideal domain. Then R is semi-simple if, and only if, R is either
a field or has an infinite number of maximal ideals.

Let D be a Euclidean ring. Suppose that 7 is a prime element in D. If 7 | ab where
a,b € D, then 7 divides either a or b.

Let D be a Euclidean ring. Any two elements a,b € D have a greatest common
divisor.

let D be a Euclidean ring. An element a of D has a unique factorization primes
T, Ty vy Ty,

an

3 — 01,02
That is, a = n{'my? - - - won.

Definition 4.13. Let R be a commutative ring with unity 1g. Suppose that I
denotes an ideal of R. The nil radical of I written /I is the set

VI={reR:r" el for some integer n € Z(n varies with r)}
In the ring Z of integers, when n € Z is such that
n=pi'py®...pik
the nil radical of the principal ideal (n) is such that

V(n) = (p1p2 - . . px) the ideal generated by the product pips . . . py.

For, Let a = max{ay,ay,...,ar}. Write the integer t = pips...px. Then, t* € the
ideal generated by n. So, then, (p1,p2,pr) C \/@, the radical of the ideal generated
by n. For some integer m, if m € \/@, then m s divisible by each of the primes
P1,P2, - Pk-  That is, m is an element of the ideal (p1) N (p2) N ... N (px) =
(p1pa - .- pr). Thus, the nil radical of (n) is the ideal generated by pips...px [17]
One could choose a least prime among the primes.
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