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Abstract

In this short communication we will explore Bell’s exponential function in order to
obtain new identities for a series involving the function pk(n), the number of partitions
of n into k colors.
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1 Introduction and Background

In this article we will find convergent series that relate the function that counts the
number of colored partitions with the exponential function using Bell polynomials.
Bell polynomials, named after Eric Temple Bell, are a family of polynomials significant
in combinatorics, particularly in the study of partitions of sets, moments of probability
distributions, and in the theory of differential equations. There are two primary types
of Bell polynomials: the exponential Bell polynomials and the complete (or partial) Bell
polynomials, (see, for instance, [3, 4]).

The partial Bell polynomial and complete exponential Bell partition polynomial, as
defined in Chapter 11 of Charalambides [5], [8] and [9], are given respectively by the
sums:

Bn,j(x1, x2, . . . , xn−j+1)
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=
∑

k1+2k2+...+nkn=n
ki≥0

k1+k2+...+kn−j+1=j

n!

k1(1!)k1k2!(2!)k2 · · · kn−j+1!((n− j + 1)!)kn−j+1
xk1
1 xk2

2 · · ·xkn−j+1

n−j+1 ,

(1.1)

Bn(x1, x2, . . . , xn) =
∑

k1+2k2+...+(n−j+1)kn−j+1=n
ki≥0

n!

k1(1!)k1k2!(2!)k2 · · · kn!(n!)kn
xk1
1 xk2

2 · · · xkn
n .

(1.2)
The generating function for the exponential Bell partition polynomial (1.2) is

∞∑
n=0

Bn(x1, . . . , xn)
tn

n!
= exp

(
∞∑
j=1

xj
tj

j!

)
.

In addition, these are two important and well-known properties about Bell polyno-
mials:

Bn,j(bx1, bx
2 . . . , bxn)

tn

n!
= bjBn,j(x1, x2, . . . , xn). (1.3)

Bn(x1, x2, . . . , xn) =
n∑

j=0

Bn,j(x1, x2, . . . , xn). (1.4)

The exponential Bell polynomial encodes the information related to the ways a
set can be partitioned. Thus, the number of monomials that appear in the partial
Bell polynomial is equal to the number of ways the integer n can be expressed as a
summation of k positive integers. More precisely, Bell polynomial describe the number
of partitions of n.

A partition1 of an integer n is an unordered collection of integers (λ1, λ2, . . . , λs)
such that λ1 + λ2 + . . . + λs = n. We agree that λ1 ≤ λ2 ≤ . . . ≤ λs, and each λi is
called a part of the partition. A k-colored partition of n is an integer partition of n in
which each part receives one color of k available colors. We denote by pk(n) the number
of k-colored integer partitions of n. For example p2(4) = 20, and these partitions are:
4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1
and 1 + 1 + 1 + 1.

The generating function for the sequence (pk(n)) is given by the next infinite prod-
uct.

1See Andrews [1] and Chern et al [6] for more detailed information.
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∞∑
n=0

pk(n)q
n =

∞∏
n=1

1

(1− qn)k
,

where pk(0) = 1. For simplicity we denote p1(n) = p(n).
A composition of an integer n, as defined in Heubach and Mansour in [10], is a

partition in which the order of the parts matters. For example the compositions of
n = 3 are: (1, 1, 1), (2, 1), (1, 2) and 3. We denote the set of compositions of n by Cn.
The number of compositions of n is 2n−1.

The biggest inspiration for our main result are the following theorems by Alegri and
Spreafico [2].

Theorem 1.1 (Theorem 2 of [2]). For a positive integer n, the following identity is
valid

n−1∑
k=0

p1(k)
∑

w1+...+wm∈C(n−k)

∑
1≤l1<...<lm

(−1)mp2(w1) · · · p2(wm)

l21 · · · l2mπ2m

∏
l ̸=l1,...,lm

(
1− 1

l2π2

)
(1.5)

+p1(n)sin(1) =
∞∑
k=0

(−1)kp2k+1(n)

(2k + 1)!
.

Theorem 1.2 (Theorem 3 of [2]). For a positive integer n, under the previous notations,
the following identity is valid∑

w1+...+wm∈C(n)

∑
1≤l1<...<lm

(−1)m22mp2(w1) · · · p2(wm)

(2l1 − 1)2 · · · (2lm − 1)2π2m

∏
l ̸=l1,...,lm

(
1− 4

(2l − 1)2π2

)
(1.6)

=
∞∑
k=0

(−1)kp2k(n)

(2k)!

In these theorems the authors had explore the functions sine, cosine and the gener-
ating function for the k-colored integer partitions of n. In these paper, we will provide
an explicit exponential formula for the k-colored integer partitions of n in terms of the
partial Bell polynomials. This connection provide a new combinatorial interpretation
for partial Bell polynomial, as well as, new identities involving partition functions.

The next section is devoted to establish these new identities.

2 Identities

In order to obtain our results, we must consider the generating function for the number
of k-colored partitions of n given by
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∞∑
n=0

n!pk(n)
qn

n!
=

(
∞∑
n=0

n!p(n)
qn

n!

)k

. (2.1)

By Shattuck [11] (Theorem 7, and Remark) and Comtet [7] (page 141) we have the
potential function pk(n) = pk(n)(1!p(1), 2!p(2), . . .) and

n!pk(n) =
n∑

j=0

k!

(k − j)!
Bn,j(1!p(1), . . . , (n− j + 1)!p(n− j + 1)). (2.2)

Therefore, by expressions (2.1) and (2.2), we obtain

∞∑
k=0

(−x)k

k!
pk(n) =

1

n!

∞∑
k=0

(−x)k

k!

n∑
j=0

k!

(k − j)!
Bn,j(1!p(1), . . . , (n− j + 1)!p(n− j + 1))

=
1

n!

n∑
j=0

∞∑
k=0

(−x)j

(k − j)!
Bn,j(1!p(1), . . . , (n− j + 1)!p(n− j + 1))

=
1

n!

n∑
j=0

Bn,j(1!p(1), . . . , (n− j + 1)!p(n− j + 1))Q(j),

where Q(j) =
∑∞

k=j
(−x)k

(k−j)!
= e−x(−x)j. Thus,

∞∑
k=0

(−x)k

k!
pk(n) =

e−x

n!

n∑
j=0

Bn,j(−1!xp(1),−2!xp(2), . . . ,−(n− j + 1)!xp(n− j + 1)).

By identities (1.3) and (1.4), we get

∞∑
k=0

(−x)k

k!
pk(n) =

e−x

n!
Bn(−1!xp(1),−2!xp(2), . . . ,−(n)!xp(n)). (2.3)

Therefore, by identities (1.2) and (2.3), we establish the following result, that is the
core of this article.

Theorem 2.1.
∞∑
k=0

(−x)k

(k)!
pk(n) = e−x

∑
k1+2k2+...+nkn=n

ki≥0

(−x)k1+k2+···+kn(p(1))k1(p(2))k2 · · · (p(n))kn
k1!k2! · · · kn!

.

(2.4)
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Now, by evaluating x = −θi in (2.4), for a real number θ, we get the following result.

Corollary 2.2. The following identity holds

∞∑
k=0

(−1)kp2k(n)

(2k)!
θ2k + i

∞∑
k=0

(−1)kp2k+1(n)

(2k + 1)!
θ2k+1

= eθi
∑

k1+2k2+...+nkn=n
ki≥0

(θi)k1+k2+···+kn(p(1))k1(p(2))k2 · · · (p(n))kn
k1!k2! · · · kn!

.

In addition, for x = −i in (2.4) and by combining the results of Theorems 1.1 and
1.2, we have the next identity.

Corollary 2.3.

∞∑
k=0

(−1)k

(2k)!
p2k(n)−i

∞∑
k=0

(−1)k

(2k + 1)!
p2k+1(n) = e−i

∑
k1+2k2+...+nkn=n

ki≥0

(p(1))k1(p(2))k2 · · · (p(n))kn
k1!k2! · · · kn!

=
∑

w1+...+wm∈C(n)

∑
1≤l1<...<lm

(−1)m22mp2(w1) · · · p2(wm)

(2l1 − 1)2 · · · (2lm − 1)2π2m

∏
l ̸=l1,...,lm

(
1− 4

(2l − 1)2π2

)

−i

n−1∑
k=0

p1(k)
∑

w1+...+wm∈C(n−k)

∑
1≤l1<...<lm

(−1)mp2(w1) · · · p2(wm)

l21 · · · l2mπ2m

∏
l ̸=l1,...,lm

(
1− 1

l2π2

)
+ p1(n)sin(1)


Now, by splitting equation (2.4) into real and imaginary parts, we have the next

identities.

Corollary 2.4.

∞∑
k=0

(−1)kp2k(n)

(2k)!
θ2k =

∑
k1+2k2+...+nkn=n
k1+k2+...+kn even

(θi)k1+k2+···+kn(p(1))k1(p(2))k2 · · · (p(n))kncosθ
k1!k2! · · · kn!

+i

 ∑
k1+2k2+...+nkn=n
k1+k2+...+kn odd

(θi)k1+k2+···+kn(p(1))k1(p(2))k2 · · · (p(n))knsinθ
k1!k2! · · · kn!


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∞∑
k=0

(−1)kp2k+1(n)

(2k + 1)!
θ2k+1 = −i

 ∑
k1+2k2+...+nkn=n
k1+k2+...+kn odd

(θi)k1+k2+···+kn(p(1))k1(p(2))k2 · · · (p(n))kncosθ
k1!k2! · · · kn!


+

∑
k1+2k2+...+nkn=n
k1+k2+...+kn even

(θi)k1+k2+···+kn(p(1))k1(p(2))k2 · · · (p(n))knsinθ
k1!k2! · · · kn!

3 Conclusion

In this paper we established a combinatorial interpretation of Bell’s exponential func-
tion is terms of the number of partitions of n into k colors. For do this, we provided
an exponential formula for the k-colored partition function in terms of the Bell’s expo-
nential function, and derived some identities by evaluating the function for functions
sine,cosine in a real and imaginary numbers.

It seems to us that this combinatorial approach is new in literature, and and it is a
subject that can still be explored further.
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