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Abstract

This paper proposes to establish a relationship between the Stirling numbers of the
first kind and the cycle types of Sn, exhibiting the feasibility of a procedure to generate
Stirling numbers of the first kind and proving some identities by the combination of
these two concepts. This is possible due these numbers’ strong algebraic appeal, given
that we can define them as the number of permutations of Sn that decompose into
exactly k disjoint cycles. There is a bijective relationship between the cycle types of
Sn and the partitions of a positive integer n, thus given a partition of n, we know
how many permutations of Sn exist that are of a given cycle type. Given that all
permutation of Sn can be decomposed into product of cycles, so we know how the
number of permutations with a certain cycle type by looking at the integer partitions
of n. Thus, Stirling numbers of the first kind can be easily determined. Throughout
the article, we will explore some identities concerning Stirling numbers of the first kind
and the binomial coefficient, as well as presenting the concepts of partitioning positive
integers and cycle types of Sn.

1 Introdution

It is possible to combinatorically think of a permutation of n objects as ordered lists.
For instance, if we want to sort the numbers 1, 2, 3 without any restriction or a specified
order, we can do it as follows: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). That
is, we have 6 ways to sort them. If we denote Pn as the number of permutations of n
elements, then we have that Pn = n! [5]. From group theory’s standpoint, a permutation
is a function defined in a set X which takes values also in X. Throughout this work we
employ this notion of a permutation, as formalized in Definition 1.1 below.
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Definition 1.1. Let X be a non-empty set. A permutation of X is a bijective function
σ : X → X. We denote by S(X) the set of all permutations of X.

Considering the composition operation, we have that (S(X), ◦) is a group, called a
permutation group. In our work, we are interested in the case where the set X is finite.
Without loss of generality, we consider that X = {1, 2, · · · , n} = [n]. Thus, when X
has n elements, we denote its group of permutations by Sn and we call it the symmetric
group of degree n. Trivially, Sn = n!.

Given σ ∈ Sn and j ∈ [n], we denote by σ(j) the value of the bijective function σ
under j. Whilst equipped with this notion, we can represent a permutation of Sn as a
two-line diagram shown below:(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
For example, the identity permutation of S3 can be represented as

(
1 2 3
1 2 3

)
and

tells us that σ(1) = 1, σ(2) = 2, σ(3) = 3.
Another notation for this permutation would be (1)(2)(3). We call this a cycle

notation. Thus, the identity can be represented by the product of three cycles, each
with length 1.

Let’s see another example, consider the permutation of S6:

(
1 2 3 4 5 6
2 5 4 3 1 6

)
.

Notice that the 1 is sent to 2, the 2 is sent to 5, and the 5 is sent back to the 1, as we
close the cycle (1 2 5). In the same way, the 3 is sent to 4, and the 4 is sent back to the
3, closing the cycle (3 4). Finally, the 6 is fixed in its original position. Therefore, we

have

(
1 2 3 4 5 6
2 5 4 3 1 6

)
= (1 2 5)(3 4)(6).

Therefore, every permutation of Sn can be represented as the product of disjoint
cycles, where disjunct means that, given two cycles, their intersection is the empty set.

This idea of cycles of permutations generates a family of numbers known as Stirling
numbers of the first kind, which can be defined as the number of permutations of Sn

that decompose into exactly k cycles. We give them a proper definition and some
necessary background in section 3.

With the concepts defined so far, we explore the cycle types of Sn in the next
section, as well as showing that there is a direct relationship between the partitions of
the positive integer n with the cycle types of Sn.

In Section 3 we present some identities for certain classes of Stirling numbers of
the first kind via cycle types. Finally, in Section 4, we will show an identity for these
numbers by means of cycle types.
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2 Cycle types of a permutation and the integer par-

titions of n

As previously mentioned, the set of permutations of n objects is a group when equipped
with the composition operation. In [1], the permutations of n objects, Sn, are repre-
sented through the product of disjoint cycles and this representation is unique, except
by the order of the elements of the cycles. A permutation σ ∈ Sn may have cycles of
the same length represented as the product of cycles. Accordingly, we define the cycle
type of a permutation.

Definition 2.1. Let σ ∈ Sn. The cycle type of σ is defined by T (σ) = x
kl1
l1

. . . x
kls
ls
,

where klj is the number of cycles of length lj that appear in the decomposition of σ,
j = 1, · · · , s.

Given σ ∈ Sn, we can rewrite a cycle type of σ, T (σ) = x
kl1
l1

. . . x
kls
ls
, as T (σ) =

xk1
1 · · · xkn

n , where kj is the number of cycles of length j, some kj may be null, for
j = 1, 2, · · · , n.

Example 2.2. Consider the permutation σ1 = (4)(2 3)(5 1)(6 8 7) ∈ S8, and note that
it has one cycle of length 1, two cycles of length 2, and one cycle of length 3, thus the
cycle type of σ is given by T (σ1) = x1x

2
2x3.

Example 2.3. Let σ2 = (7)(2 3)(5 1)(6 8 2) be a permutation of S8. The cycle type of
σ2 is given by T (σ2) = x1x

2
2x3.

In Examples 2.2 and 2.3, we have two distinct permutations of S8 with the same
cycle type. From this, it can be seen that the cycle type of a permutation is not unique.
Also, note that both permutations σ1 and σ2 can be associated with the following integer
partition of 8, 1 + 2 + 2 + 3. Therefore, we aim to establish a connection between the
cycle types of Sn and the integer partitions of the positive integer n.

Definition 2.4. Let n be a positive integer. A sequence of integers (λ1, λ2, . . . , λs),
with λ1 ≥ λ2 ≥ · · · ≥ λs, is an integer partition of n if, and only if, n = λ1+λ2+· · ·+λs..
The λj are called parts of the integer partition, j = 1, . . . , s, and s is the length of the
partition

Example 2.5. Table 1 shows all the integer partitions of numbers 3, 4, and 5.

We denote by p(n) the number of integer partitions of the positive integer n. Thus,
from Table 1 we have that p(3) = 3, p(4) = 5 and p(5) = 7. If n = 7, we have p(7) = 15,
and it is important to notice that the number of integer partitions grow rapidly.
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n 3 4 5

Partitions
of n

3 4 5
2+1 3+1 4+1

1+1+1 2+2 3+2
2+1+1 3+1+1

1+1+1+1 2+2+1
2+1+1+1

1+1+1+1+1

Table 1: Partitions for n = 3, 4, 5

For many years, mathematicians sought to obtain an explicit formula for p(n). Due
to the works of S. Ramanujan, G. H. Hardy, and H. Radamacher, we have an asymptotic

expression for p(n) given by
1

4n
√
3
eπ
√

2n
3 as n → ∞.

Note that since σ ∈ Sn is a permutation of the elements of [n], then we have n
symbols distributed among all the cycles of their equivalent class. Thus, kl1l1 + · · · +
klsls = n and, as 1 ≤ l1 < · · · < lj ≤ n, and by the definitions of klj , we have an integer
partition of n = kl1l1 + · · ·+ klsls.

Conversely, if we have an integer partition of n > 1 with

n = kl1l1 + · · ·+ klsls, with klj , lj ∈ [n] and l1 < · · · < ls

with klj terms equal to lj, for j = 1, · · · , s, then it is possible to find a permutation

σ ∈ Sn with cycle type T (σ) = x
kl1
l1

· · · xkls
ls
.

Theorem 2.6. Let n be a positive integer such that n = kl1l1 + kl2l2 + · · · + klsls.

Then, there exist
n!

l
kl1
1 kl1 !l

kl2
2 kl2 ! · · · l

kls
s kls !

permutations σ ∈ Sn with cycle type T (σ) =

x
kl1
l1

· · · xkls
ls
. In other words, given a cycle type xk1

1 · · ·xkn
n , we have

h(k1, · · · , kn) =
n!

1k1k1! · · ·nknkn!

permutations in Sn with this cycle type.

Proof. Consider any permutation of Sn given by σ = (a1 a2 · · · ar) with r ≤ n and a
cyclic structure given by xk1

1 xk2
2 · · ·xkn

n .. As previously mentioned, 1k1+2k2+· · ·+nkn =
n, and some kj can be equal to zero, for j = 1, · · · , n.
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Since σ is a permutation of n objects, then the number of ways to rearrange the ele-
ments of σ is n!. However, the ki cycles of length i contribute to a rearrangement which
can be done by permuting the cycles of the same length. Thus, by the Multiplicative
Principle, we have that these cycles contribute with k1!k2! · · · kn! rearrangements.

Now, a cycle of length r similar to σ can be represented by r different ways, by
simply permuting the ai’s of the cycle in the following ways:

(a1 a2 · · · ar) = (ar a1 · · · ar−1) = · · · = (ar−1 ar · · · a1).

Therefore, these cycles contribute with 1k12k2 · · ·nkn rearrangements, as there are
ki cycles of length i for each i. It follows that

h =
n!

1k1k1! · · ·nknkn!

where h is the number of permutations of Sn with cycle type xk1
1 xk2

2 · · ·xkn
n .

Given the facts stated so far, we can establish the relationship between the permu-
tations cycle types of Sn and the integer partitions of the positive integer n.

Corollary 2.7. There is a bijective correspondence between the cycle types of Sn

and the integer partitions of n. That is, there are p(n) different cycle types of the
permutations of Sn.

Example 2.8. Table 2 shows the integer partitions of 4, as well as the permutations
of S4 and the cycle types associated with each group of permutations with the same
number of cycles.

Example 2.9. By Theorem 2.6 we know that the number of permutations with cycle

type x4 is
4!

41 · 1!
= 3! = 6. That is, we have 6 permutations of S4 with cycle type x4,

as shown in Table 2.

Example 2.10. Due to Table 2, we can check that the different cycle types of S4

are: x4
1, x

2
2, x

2
1x2, x1x3, x4. In other words, we have p(4) = 5 different cycle types, as

described by Corollary 2.7.
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partitions of 4 permutations of S4 cycle types

4 (2341), (2413), (3421), (1342), (4312), (4123) x4

1+3 (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), x1x3

(4)(123), (4)(132)

2+2 (12)(34), (13)(24), (14)(23) x2
2

1+1+2 (1)(2)(34), (1)(3)(24), (1)(4)(23), (2)(3)(14), (2)(4)(13), (3)(4)(12) x2
1x2

1+1+1+1 (1)(2)(3)(4) x4
1

Table 2: The permutations of S4 together with the partitions of 4 and their cycle types

3 Stirling numbers of the first kind: definitions and

identities

From the point of view of generative functions, the Stirling numbers of the first kind
are defined by [3] and [8] as the coefficients of xk in the expansion of the polynomial
x(x+1) · · · (x+(n− 1)), with 0 < k ≤ n. That is, they represent a sequence generated
by this class of polynomials with fixed degree n, where the coefficients of the powers of
x belong to this sequence.

In addition to this definition, we can also interpret Stirling’s numbers of the first
kind as being the number of ways of n people sit around of k identical circular tables
without any table being empty, as defined by [2]. However, we will explore the definition
given by [7], where the Stirling numbers of the first kind are equal to the number of
permutations of Sn that decompose into exactly k disjoint cycles.

Thus, in this section we will explore Stirling numbers of the first type, as well
as present some identities involving these numbers. We will prove these identities
using algebraic arguments involving the cycle types of a permutation and the integer
partitions of n.

Definition 3.1. Let n, k natural numbers. We define the Stirling numbers of the
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first kind, denoted by

[
n
k

]
, as the non-negative integers that determine the number

of permutations of Sn that decompose into exactly k disjoint cycles. For theoretical

reasons, it is agreed upon that,

[
0
0

]
= 1 and, if k > 0 then

[
0
k

]
= 0.

Example 3.2. Table 3 shows some values for the Stirling numbers of the first kind.

Table 3: Some Stirling numbers of the first kind[
n
k

]
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 1 1 1 2 6 24 120
k = 2 0 1 3 11 50 274
k = 3 0 0 1 6 35 225
k = 4 0 0 0 1 10 85
k = 5 0 0 0 0 1 15
k = 6 0 0 0 0 0 1

In Proposition 3.3 we present a result that will be useful in order to prove that the
sum of the Stirling numbers of the first kind for a fixed n is n!. It follows from a result
presented at [4]. An example can also be seen in Table 3, where the sum of the elements
of the n-th column is equal to n!.

Proposition 3.3. Consider k1, k2, · · · , kn ∈ {0} ∪ [n]. Then, we have that∑
k1+k2·2+···kn·n=n

1

1k1k1! · · ·nknkn!
= 1.

Equipped with the concept above, we prove the following result through the defini-
tion of cycle types and Corollary 2.7.

Theorem 3.4. Let the integer n ≥ 1. Then,

n∑
k=1

[
n
k

]
= n!.

Proof. By Corollary 2.7 we have that there are p(n) different permutations cycle types

of Sn. Let λi = k
(i)
1 · 1 + k

(i)
2 · 2 + · · ·+ k

(i)
n · n be the integer partitions of n associated
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to the p(n) different cycle types. So, by Theorem 2.6 we have that the number of

permutations with cycle type x
k
(i)
1

1 · · ·xk
(i)
n

n is
n!

1k
(i)
1 k

(i)
1 ! · · ·nk

(i)
n ki

n!
.

By definition, we have that

[
n
k

]
is equal to the number of permutations of Sn that

decompose into exactly k disjoint cycles. Thus, for each k = 1, · · · , n, we have that
the permutations of Sn with k cycles are also associated with the partitions λi. In this
way, we have that

n∑
k=1

[
n
k

]
=

p(n)∑
i=1

n!

1k
(i)
1 k

(i)
1 ! · · ·nk

(i)
n ki

n!

= n!

p(n)∑
i=1

1

1k
(i)
1 k

(i)
1 ! · · ·nk

(i)
n ki

n!

= n!

The equality between the second and the third lines follows from Proposition 3.3

Binomial numbers can be combinatorically interpreted as being the number of ways
to choose k objects from a set with n objects. Likewise, in the following propositions
we will present some identities involving the Stirling numbers of the first kind and
the binomial numbers. It is worth noting that we will prove the propositions with
arguments using the integer partitions of n and the cycle types of Sn associated with
those integer partitions.

Proposition 3.5. For every n > 1, we have that

[
n

n− 1

]
=

(
n

2

)
.

Proof. By definition, we want to find the number of permutations of Sn that decompose
as the product of n−1 cycles. By Corollary 2.7, we have that, for each integer partition
of n, exists a permutation of Sn associated with it. So, we only have to check for integer
partitions of n that contain n − 1 parts. If we consider all the parts that are equal to
1, then we will have an integer partition of n − 1. So, we need to add 1 to any of the
parts, so that we have a partition of n. That is, we will have a part equal to 2 and
n− 2 parts equal to 1. Thus, the cycle type associated with this integer partition is of
the form xn−2

1 x2. Therefore, by Theorem 2.6, we have that[
n

n− 1

]
=

n!

1n−2(n− 2)!211!
=

n!

2(n− 2)!
=

(
n

2

)
.
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Proposition 3.6. For every n > 2, we have that

[
n

n− 2

]
=

3n− 1

4

(
n

3

)
.

Proof. In the same way as argued before in the demonstration of the Proposition 3.5,
we now need to look at the partitions of n into n − 2 parts. Considering all the parts
equal to 1, we have an integer partition of n − 2, so we need to add 2 to the integer
partition. However, the 2 can be written as 2 and 1 + 1, thus the partitions of n with
n − 2 parts are of the form 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n−3

+3 and 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−4

+2 + 2. The cycle

types associated with these partitions are, respectively, xn−3
1 x3 and xn−4

1 x2
2. Therefore,

by Theorem 2.6, we have that

[
n

n− 2

]
=

n!

3(n− 3)!
+

1

4

n!

2(n− 4!)
= 2

(
n

3

)
+

3(n− 3)

4

(
n

3

)
=

3n− 1

4

(
n

3

)
.

Proposition 3.7. For every n > 3, we have that

[
n

n− 3

]
=

(
n

2

)(
n

4

)
.

Proof. The integer partitions of the number 3 are 3, 2+ 1, 1+ 1+ 1.. Thus, the integer
partitions associated with the permutations of Sn that decompose into n − 3 cycles
are 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n−4

+4, 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−5

+2+ 3 and 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−6

+2+ 2+ 2. The cycle

types are, respectively, xn−4
1 x4, x

n−5
1 x2x3 and xn−6

1 x3
2. Therefore, by Theorem 2.6, we

have that

[
n

n− 3

]
=

n!

4(n− 4)!
+

n!

6(n− 5!)
+

n!

48(n− 6)!

= 6

(
n

4

)
+ 4(n− 4)

(
n

4

)
+

(n− 4)(n− 5)

2

(
n

4

)
=

12 + 8n− 32 + n2 − 9n+ 20

2

(
n

4

)
=

n2 − n

2

(
n

4

)
=

(
n

2

)(
n

4

)
.

Proposition 3.8. For every n > 4, we have that

[
n

n− 4

]
=

15n3 − 30n2 + 5n+ 2

48

(
n

5

)
.
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Proof. On Table 1 we have that the partitions of 4 are: 4, 3+1, 2+2, 2+1+1, 1+1+1+1.
Thus, the cycle types associated with the permutations of Sn that decompose into n−4
cycles are of the form T (σ1) = xn−5

1 x5, T (σ2) = xn−6
1 x2x4, T (σ3) = xn−6

1 x2
3, T (σ4) =

xn−7
1 x2

2x3 and T (σ5) = xn−8
1 x4

2.Therefore, from Theorem 2.6, we have that

[
n

n− 4

]
=

n!

5(n− 5)!
+

n!

8(n− 6)!
+

n!

18(n− 6)!
+

n!

24(n− 7)!
+

n!

384(n− 8)!

= 24

(
n

5

)
+ 15(n− 5)

(
n

5

)
+

20(n− 5)

3

(
n

5

)
+ 5(n− 5)(n− 6)

(
n

5

)
+

5(n− 5)(n− 6)(n− 7)

16

(
n

5

)
= 24

(
n

5

)
+

65(n− 5)

3

(
n

5

)
+ 5(n− 5)(n− 6)

(
n

5

)
+

5(n− 5)(n− 6)(n− 7)

16

(
n

5

)
=

1152 + 1040(n− 5) + 240(n− 5)(n− 6) + 15(n− 5)(n− 6)(n− 7)

48

(
n

5

)
=

15n3 − 30n2 + 5n+ 2

48

(
n

5

)
.

In this section we explored some identities involving certain classes of Stirling num-
bers of the first kind and the binomial coefficient. In the proposition’s proofs we could
see how integer partitions of n can be used to count these numbers.

It is important to notice that we first looked at the integer partition of n − k, k =
1, · · · , 4, with all parts equal to 1. Thus, to be an integer partition of n, we would
need to add k to that partition. However, there are p(k) ways to do so. We looked
at the integer partitions of k and then we distributed elements in order to satisfy the
definition.

By doing this distribution, we got to know which are the integer partitions of n with
exactly n−k parts. Thus, it was enough to simply find the cyclic types associated with
these partitions, using the Theorem 2.6 to find the Stirling number of the first type[

n
n− k

]
, for k = 1, · · · , 4.

In the next section we are going to present an identity that identifies the Stirling
numbers of the first kind via integer partitions of n and the cycle types of Sn. This idea
is similar to other ideas that we have already developed in the course of the article.
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4 Explicit formula for the Stirling numbers of the

first kind

As we’ve mentioned before, Stirling numbers of the first kind can be interpreted as the
number of permutations of Sn that decompose into exactly k disjoint cycles.

If we take the integer partitions of n with k parts, we also get, by Corollary 2.7, the
cycle types associated with these permutations. In other words, we will have the cycle
types of all permutations of Sn that decompose to exactly k cycles.

By having these cycle types, we can use Theorem 2.6 to find the number of permu-
tations with certain cycle types. Thus, in the following theorem, we present the main
result of this work. Its proof is derived by applying Corollary 2.7 and Theorem 2.6.
Consider p(n, k) as the number of integer partitions of n with exactly k parts.

Theorem 4.1. Let πi = k
(i)
1 · 1+ k

(i)
2 · 2+ · · ·+ k

(i)
n ·n, for i = 1, · · · , p(n, k), as integer

partitions of n into exactly k parts. Then, for 0 ≤ k < n, we have that[
n
k

]
=

p(n,k)∑
i=1

n!

1k
(i)
1 k

(i)
1 ! · · ·nk

(i)
n k

(i)
n !

Example 4.2. In order to find the value of

[
5
2

]
, we know, from Table 1 that the

integer partitions of 5 with exactly 2 parts are: 1 + 4, 2 + 3. Thus, p(5, 2) = 2. From
Theorem 4.1, it follows that

[
5
2

]
=

2∑
i=1

n!

1k
(i)
1 k

(i)
1 ! · · ·nk

(i)
n k

(i)
n !

=
5!

1 · 4
+

5!

2 · 3
=

120

4
+

120

6
= 30 + 20 = 50.

Consider p(n, k) as the number of integer partitions of n with exactly k parts. If we
look at the integer partitions of n − 1 with k − 1 parts and add the number 1 in the
last part, then we would have an integer partition of n with k parts.

Now, if we take each partition of n− 1 with k parts and add 1 to some of the parts
of the integer partition, then we will also have integer partitions of n into k parts. Note
that 1 can be added in n − 1 ways. Thus, we have the following recurrence for the
number of integer partitions of n into exactly k parts:

p(n, k) = p(n− 1, k − 1) + (n− 1)p(n− 1, k). (4.1)

Due to what we have just discussed, it follows from the Corollary 4.3 below a
recurrence relationship for the Stirling numbers of the first kind. It is worth noting
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that the proof for this corollary follows directly from Theorem 4.1 and Equation 4.1.
Another proof, using the same arguments as we done for Equation (4.1), can be seen
in [6].

Corollary 4.3. Let n, k be positive integers such that 1 < k < n. Then,[
n
k

]
=

[
n− 1
k − 1

]
+ (n− 1)

[
n− 1
k

]
.

5 Closing remarks

As discussed, Stirling numbers of the first kind represent the number of permutations of
Sn that decompose into exactly k disjoint cycles. For certain values of k, these numbers
are closely linked to the binomial coefficient, which is a powerful combinatorics tool for
counting certain groupings of objects.

Broadly speaking, we can think of Stirling numbers of the first kind as a generaliza-
tion of the notion of a circular permutation, because these numbers count the number
of possibilities of distributing n people around k identical round tables, with no table
left empty, as well as defines [2].

Based on this definition, we can use concepts from Partition Theory to determine
the Stirling numbers of the first kind, and for that we just have to look at the inte-
ger partitions of n into at most k parts, and so, by using combinatorics, count the
distributions that must be made around the tables.

Thus, we can already see the potential use of Partition Theory to count Stirling
numbers of the first kind. However, as we have seen throughout this article, integer
partitions of n are closely related to the cycle types of the permutations of Sn, and
we know how to count the number of cycle types. In this way, we have established an
explicit formula which counts the Stirling numbers of the first kind via integer partitions
and cycle types of the permutations of Sn.

Some of our references presented proofs for identities involving the Stirling numbers
of the first kind analytically, or by using other means, such as the Vieta’s Formula.
Others use the recurrence relationship that these numbers have, and, by means of the
Principle of Finite Induction, they complete some proofs. However, our intention was
to use the algebraic potential that Stirling numbers have and, through Partition Theory
and cycle types, establish a way to compute them without having to decompose all the
permutations of Sn.
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http://www.bienasbm.ufba.br/M37.pdf . Acesso em 11 de setembro de 2018.

[5] J.P.O. Santos; M.P. Mello; T.I. Murari, Introdução à Análise Combinatória, 3
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