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Abstract

We developed in this work the computation of the volume of the sphere via the method
of exhaustion by inscribed truncated right cones. We show that this computation can
be used in calculus courses in several ways; mainly, to motivate and clarify the usage of
the squeeze theorem in the computations of sum limits. As a result, we generalized a
sum limit using Bernoulli numbers, producing a magnificent example of applied math-
ematics, and highlighting the importance of exploring when studying mathematics.
keywords: The method of exhaustion, sphere volume, combinatorics, calculus teach-
ing, GeoGebra 3D.

Abstract

Neste trabalho, apresentamos o cálculo do volume da esfera através do método da exaus-
tão inscrevendo troncos de cone retos. Mostramos que essa estratégia pode ser usada
em cursos de cálculo de várias maneiras; principalmente, para motivar e esclarecer o uso
do teorema do confronto no cálculo de limites de somas. Como resultado, generalizamos
o limite de uma soma finita empregando os números de Bernoulli, produzindo um belo
exemplo de matemática aplicada e evidenciando a importância de explorar quando se
estuda matemática.
Palavras-chave: Método da Exaustão, volume da esfera, combinatória, ensino de
cálculo, GeoGebra 3D.
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1 Introduction

The teaching of calculus [4] and analysis become more significant when the professor
employs representative problems to develop or illustrate ideas and concepts. Thus, to
calculate limits of continuous functions, either by definition and properties [1, 22, 23]
or by using the squeeze theorem [8], professors can investigate problems arising from
physics, biology, and the various branches of engineering. Now to calculate limits of
finite sums, geometry is a fertile field of problems to explore, such as the calculation of
areas and volumes [18, 19] through the method of exhaustion.

Problems involving calculating areas and volumes permeate mathematics history [3].
The method of exhaustion [11, 20] is a technique invented by the classical Greeks to
determine the area of a plane figure through the inscription and circumscription of a
sequence of polygons whose sum of the areas is close to the area of the figure under
study. Just like the area of a plane figure, we can also calculate the volume of a solid
inscribing or circumscribing polyhedra or other solids, like cylinders for example, whose
sum of volumes is close to the volume of the solid. However, the method of exhaustion
has limitations in the calculation of areas and volumes [5].

Archimedes of Syracuse (287 BCE - 212 BCE) used the method of exhaustion to
determine various mathematical results, such as the delimitation for the irrational con-
stant π, the area of the parabolic segment, and the volume of the sphere [2, 3, 10]. As
for the first result, Archimedes established 223

71
< π < 22

7
by calculating the perimeter

of regular polygons of up to 96 sides, respectively, inscribed and circumscribed to the
circumference. For the second, he determined, inscribing and circumscribing rectangles,
that area of the plane region bounded by the graph of the function y = x2, the x axis,
and the vertical lines x = 0 and x = b, is equal to b2

3
. As for the third, Archimedes

established that the volume of a sphere is four times the volume of a cone with radius
and height equal to the radius of the sphere.

The above-mentioned results “are widely recognized as ancient harbingers of the
modern squeeze theorem” ([3], p. 56), presented in a version for sequences in Theorem
1, and whose demonstration can be found in Dunn [6] and Stewart [23].

Theorem 1.1 (squeeze theorem for sequences). Let an, bn and cn numerical sequences
such that an ≤ bn ≤ cn for all n ≥ n0. If lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn exists and

lim
n→∞

bn = L.

Following Archimedes’ strategy, we can calculate the volume of the sphere using
the method of exhaustion inscribing and circumscribing right cylinders, or inscribing
truncated right cones. Using the latest strategy, we notice that this approach:
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1. Gives us a very convenient context to understand the origins and intuitions of
Theorem 1.1. In this concrete case, the presentation parallels the historical de-
velopment in a technically simple framework.

2. Can be used as the starting point of exploration in several areas and viewpoints of
mathematics, providing material and activities for the interested student to feel
mathematics as an alive, dynamic subject.

In this way, this paper has two main characters: on the one hand, the computation
of the volume of the sphere via the method of exhaustion by inscribed truncated right
cones in a hemisphere; on the other hand, the use of the squeeze theorem to calculate
sum limits arising from sphere volume computations. Concretely, we present:

• The standard method for inscribing/circumscribing cylinders to calculate the vol-
ume of the sphere, which exemplifies the historical Greek approach to these com-
putations via the method of exhaustion, and produces the subject of computation
of sums of squares and its rich collection of intuitions and methods.

• A more precise way of approximating the volume of the sphere by inscribing
truncated right cones, that introduces the squeeze theorem in a rather natural
way. In fact, in several ways, two of them, geometrical and another one algebraic,
reflect the tension of geometric and algebraic approaches during the formalization
of calculus ([3], chapter VII).

• The generalization of a limit resulting from the sphere volume computations,
producing more sophisticated examples of the usage of the squeeze theorem and
introducing the subject of sums of powers, Bernoulli numbers and its associated
combinatorics.

2 Method

The motivating problem of this work was the use of the exhaustion method to determine
the volume of the sphere - Theorem 2.1.

Theorem 2.1 (volume of the sphere). The volume V of the sphere ε with radius r is

given by V(ε) =
4

3
πr3.

The standard approach in mathematical literature is to inscribe or circumscribe
right cylinders in the sphere or in the hemisphere [11, 20, 24], which produces finite
sum limits. These limits are calculated using the sum of the first k natural numbers.
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In the investigative process, we decided to adopt a more precise strategy: inscribing
truncated right cones in the hemisphere (the lateral surface of a truncated right cone
fits better to the spherical surface than the lateral surface of a right cylinder). This
approach generated a more complex limit, which we calculated using Theorem 1.1. The
computational investigation of this limit (Appendix) helped us determine its general-
ization. In this sense, we work on one of the meanings of the generalization process in
mathematics: to extend a mathematical concept or property [14]. We use during this
process a dynamic geometry software, GeoGebra 3D [7] , to build a bidimensional and
three-dimensional figures, which illustrate the old and new approaches.

2.1 The standard method: inscribing and circumscribing cylin-
ders

Consider δ a hemisphere of radius r in which n right cylinders of height
r

n
are inscribed,

as shown in Figure 1(a).

Figure 1: Volume of the sphere by the method of exhaustion: (a) cylinders inscribed in the
hemisphere; (b) radii of the cylinders inscribed in the hemisphere

(a) (b)

Source: The authors, with GeoGebra 3D.

In the inscription of n right cylinders, we should express the radius ri, i = 1, 2, . . . , n,
of each cylinder as a function of the radius r of the hemisphere. For this purpose, it
is sufficient to apply the Pythagorean theorem [13] to the rectangles defined in the
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meridian section of the hemisphere, as shown in Figure 1(b). In that way, we have

r21 =r2 −
( r
n

)2
,

r22 =r2 −
(

2r

n

)2

,

r23 =r2 −
(

3r

n

)2

,

...

r2n−1 =r2 −
[

(n− 1)r

n

]2
,

r2n =r2 −
(nr
n

)2
.

Thus,

r2i = r2 −
(
ir

n

)2

= r2
(

1− i2

n2

)
. (2.1)

The volume of a right cylinder of radius R is πR2h [11, 16], where h is the height

of the cylinder. Thus, using (2.1) and h =
r

n
, the volume Vi of each cylinder inscribed

in the hemisphere is equal to:

Vi = πr2
(

1− i2

n2

)
r

n
= πr3

(
1

n
− i2

n3

)
. (2.2)

In (2.2), i = n represents a cylinder with rn = 0 and volume Vn = 0 (degenerate
cylinder). The sum of the volumes of the n cylinders provides an approximation for the
volume V(δ) of the hemisphere. Thus, intuitively:

V(δ) ≈
n∑

i=1

Vi. (2.3)

Replacing (2.2) in approximation (2.3), and using the properties of a discrete sum,
we obtain

V(δ) ≈
n∑

i=1

πr3
(

1

n
− i2

n3

)
= πr3

1

n3

n∑
i=1

(
n2 − i2

)
. (2.4)

To improve the approximation (2.4), we can increase the value of n, i.e. we can
inscribe a larger number of cylinders in the hemisphere. Thus, for n → ∞, which
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implies
r

n
→ 0, we have

V(δ) = lim
n→∞

n∑
i=1

Vi = lim
n→∞

πr3
1

n3

n∑
i=1

(
n2 − i2

)
= πr3 lim

n→∞

1

n3

n∑
i=1

(
n2 − i2

)
,

V(δ) =πr3 lim
n→∞

(
1

n3

n∑
i=1

n2 − 1

n3

n∑
i=1

i2

)
= πr3 lim

n→∞

(
1− 1

n3

n∑
i=1

i2

)
. (2.5)

Here we have, naturally, the appearance of the sum of the squares of the first n
natural numbers, whose closed formula [9, 12, 15] is given by

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
. (2.6)

Then, using (2.6) in (2.5), we obtain

lim
n→∞

1

n3

n∑
i=1

i2 = lim
n→∞

1

n3

[
n(n+ 1)(2n+ 1)

6

]
,

lim
n→∞

1

n3

n∑
i=1

i2 = lim
n→∞

2n3 + 3n2 + n

6n3
= lim

n→∞

(
1

3
+

1

2n
+

1

6n2

)
=

1

3
. (2.7)

Now, replacing (2.7) in (2.5), we conclude

V(δ) =
2

3
πr3. (2.8)

In addition, multiplying (2.8) by two, we have the volume of the sphere given by
Theorem 2.1.

To prove the volume of the sphere circumscribing right cylinders in a hemisphere, as
illustrated in Figure 2(a), we repeat the beginning of the proof for inscribed cylinders.
However, as can be seen in Figure 2(b), the radius of a given circumscribed cylinder is
the same as the radius of the previous inscribed cylinder.

Then, denoting with bars the quantities related to the circumscribed cylinders, we

ReviSeM, Ano 2021, No. 3, 77–96 82



Nós, R.; Sano, M.; Tavares, M.

Figure 2: Volume of the sphere by the method of exhaustion: (a) cylinders circumscribed in
the hemisphere; (b) comparison between the radii of the circumscribed and inscribed cylinder
in the hemisphere

(a) (b)

Source: The authors, with GeoGebra 3D.

get

r̄21 =r2,

r̄2i =r2 −
[

(i− 1)r

n

]2
= r2

[
1− (i− 1)2

n2

]
, i = 2, . . . , n,

V̄i =πr2
[
1− (i− 1)2

n2

]
r

n
= πr3

[
1

n
− (i− 1)2

n3

]
,

V(δ) ≈
n∑

i=1

V̄i =
n∑

i=1

πr3
[

1

n
− (i− 1)2

n3

]
= πr3

1

n3

n∑
i=1

[
n2 − (i− 1)2

]
,

V(δ) = lim
n→∞

n∑
i=1

V̄i = lim
n→∞

πr3
1

n3

n∑
i=1

[
n2 − (i− 1)2

]
,

V(δ) =πr3 lim
n→∞

[
1− 1

n3

n∑
i=1

(i− 1)2

]
. (2.9)

Now we can change variables in the sum in (2.9). Setting j = i− 1, we have

n∑
i=1

(i− 1)2 =

(
n∑

j=1

j2

)
− n2. (2.10)
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Thence, using (2.7) and (2.10) in (2.9)

V(δ) = πr3 lim
n→∞

[
1− 1

n3

(
n∑

j=1

j2

)
+

1

n

]
=

2

3
πr3.

In addition, we have the same limit V(ε) =
4

3
πr3 for the volume of the sphere,

and due to these computations, we get an estimate of the cumulative difference in the
volumes of the inscribed and circumscribed cylinders:

n∑
i=1

(
V̄i − Vi

)
= V̄1 − Vn = πr3

1

n
. (2.11)

The two sums appearing in (2.11) are actually the same sum with different summa-
tion limits.

2.2 Inscribing truncated right cones

Let us consider δ a hemisphere of radius r in which n truncated right cones of height
r

n
are inscribed, as shown in Figure 3(a).

Figure 3: Volume of the sphere by the method of exhaustion: (a) truncated right cones
inscribed in the hemisphere; (b) radii of the truncated right cones inscribed in the hemisphere

(a) (b)

Source: The authors, with GeoGebra 3D.

In the inscription of n truncated right cones, we should express the radius r̂i, i =
1, 2, . . . , n, n + 1, for each bases of the truncated cone as a function of the radius r of
the hemisphere. For this goal, it is sufficient to apply the Pythagorean theorem to the
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trapezoids defined in the meridian section of the hemisphere, as shown in Figure 3(b).
In that way, we have

r̂21 =r2,

r̂22 =r2 −
( r
n

)2
,

r̂23 =r2 −
(

2r

n

)2

,

r̂24 =r2 −
(

3r

n

)2

,

...

r̂2n−1 =r2 −
[

(n− 2)r

n

]2
,

r̂2n =r2 −
[

(n− 1)r

n

]2
,

r̂2n+1 =r2 −
(nr
n

)2
.

Thus,

r̂2i =r2 −
[

(i− 1)r

n

]2
= r2

[
1− (i− 1)2

n2

]
, (2.12)

r̂i =
r

n

√
n2 − (i− 1)2, with i = 1, 2, . . . , n+ 1. (2.13)

The volume of a truncated right cone is
πh

3

(
R̃2 + R̃r̃ + r̃2

)
[16], where h is the

height, and R̃ and r̃ are the radius of the basis of the truncated right cone. Thus, the
volume V̂i of each truncated right cone inscribed in the hemisphere is equal to

V̂i =
π

3

r

n

(
r̂2i + r̂ir̂i+1 + r̂2i+1

)
,

which after using (2.12), and (2.13), and h =
r

n
, and some algebraic manipulations

transforms to

V̂i =
π

3
r3
{

1

n3
[
n2 − (i− 1)2

]
+

1

n3

√
(n2 − i2) [n2 − (i− 1)2] +

1

n3
(
n2 − i2

)}
. (2.14)
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In (2.14), i = n represents a right cone with r̂n+1 = 0 and volume V̂n =
1

3
πr̂2n

r

n
(degenerate truncated right cone).

The sum of the volumes of the n truncated right cones provides an approximation
for the volume V(δ) of the hemisphere. Thus, intuitively,

V(δ) ≈
n∑

i=1

V̂i,

V(δ) ≈π
3
r3

1

n3

n∑
i=1

{[
n2 − (i− 1)2

]
+
√

(n2 − i2) [n2 − (i− 1)2] +
(
n2 − i2

)}
. (2.15)

Therefore, the limit (if it exists)

V(δ) = lim
n→∞

n∑
i=1

V̂i,

V(δ) =
π

3
r3 lim

n→∞

1

n3

n∑
i=1

{[
n2 − (i− 1)2

]
+
√

(n2 − i2) [n2 − (i− 1)2] +
(
n2 − i2

)}
, (2.16)

represents the volume of the hemisphere δ.
We now proceed to study the limit in (2.16) from progressively finer viewpoints.

3 Results

Notice that the expression (2.16) has three summands, one of them containing the
square root, and the other two having been computed in Section 2. Thus if one can
compute

lim
n→∞

1

n3

n∑
i=1

√
(n2 − i2) [n2 − (i− 1)2], (3.1)

then it is done. We shall see that this square root term increases several interesting
developments.

The key observation to be made here is that each summand in (2.15) represents the
volume of an inscribed truncated right cone. As such, inspecting Figure 4 shows that

Vi ≤ V̂i ≤ V̄i. (3.2)

Then
n∑

i=1

Vi ≤
n∑

i=1

V̂i ≤
n∑

i=1

V̄i.
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Figure 4: Volume of the sphere by the method of exhaustion: comparison between inscribed
cylinder, inscribed right cone, and circumscribed cylinder

Source: The authors, with GeoGebra 3D.

Now, we can apply the squeeze theorem (Theorem 1.1). Since we have computed in
Section 2 the external limits

lim
n→∞

n∑
i=1

Vi, lim
n→∞

n∑
i=1

V̄i,

and they have the same value, it follows that

V(δ) = lim
n→∞

n∑
i=1

V̂i =
2

3
πr3.

Up to here, we have given a natural geometrical illustration of how the squeeze
theorem works, thus providing a way of overcoming the pedagogical problem of “just
another technique to memorize”. Indeed, we have shown that it is not necessary to
compute the limit (3.1). However, both this limit and the complete expression of the
volume of each truncated right cone deserve further scrutiny. To begin with, note that
the volume V̂i in (2.14) is a sum of three terms

V̂i =
1

3

(
V̄i + Bi + Vi

)
, (3.3)

where

Bi = πr3
1

n3

√
(n2 − i2) [n2 − (i− 1)2],
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and

lim
n→∞

1

n3

n∑
i=1

√
(n2 − i2) [n2 − (i− 1)2]

is the general term limit we are striving to compute. Note that the factor 1
3

in front of
the right side in (3.3) suggests that we are dealing with a mean. So, the inequalities
in (3.2) indicate (but do not prove!) Vi ≤ Bi ≤ V̄i, providing an avenue to apply the
squeeze theorem directly to the square room term. We develop this strategy in two
steps: geometric and algebraic.

3.1 The limit (3.1) by geometric bounds

A simple geometric/inequality argument shows that Vi ≤ Bi ≤ V̄i is true enough to
apply the squeeze theorem. Indeed, from the inclusion of the inscribed right cylinder
in the inscribed truncated right cone in the circumscribed right cylinder, we get as in
(3.2)

Vi ≤
1

3

(
V̄i + Bi + Vi

)
≤ V̄i,

which we manipulate as follows:

3Vi ≤V̄i + Bi + Vi ≤ 3V̄i;
2Vi − V̄i ≤Bi ≤ 2V̄i − Vi;

Vi +
(
Vi − V̄i

)
≤Bi ≤ V̄i +

(
V̄i − Vi

)
. (3.4)

Therefore, we did not prove that Vi ≤ Bi ≤ V̄i, but the previous argument shows
that this inequality perturbed by the difference term Vi − V̄i holds. Summing (3.4) in
i, we have

n∑
i=1

Vi +
n∑

i=1

(
Vi − V̄i

)
≤

n∑
i=1

Bi ≤
n∑

i=1

V̄i +
n∑

i=1

(
V̄i − Vi

)
. (3.5)

At this point, applying the difference formula (2.11) in (3.5), we obtain

n∑
i=1

Vi − πr3
1

n
≤

n∑
i=1

Bi ≤
n∑

i=1

V̄i + πr3
1

n
. (3.6)
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Now we can apply the squeeze theorem to the limit (3.1) since lim
n→∞

1

n
= 0. Indeed,

lim
n→∞

(
n∑

i=1

Vi − πr3
1

n

)
=

2

3
πr3,

lim
n→∞

(
n∑

i=1

V̄i + πr3
1

n

)
=

2

3
πr3,

and inequality (3.6) allows us to apply the squeeze theorem to get

lim
n→∞

n∑
i=1

Bi =
2

3
πr3.

Hence,

lim
n→∞

1

n3

n∑
i=1

√
(n2 − i2) [n2 − (i− 1)2] =

2

3
.

3.2 The limit (3.1) by algebraic bounds

The previous geometric argument shows the importance of the “slack” given by terms
with limit zero in the squeeze theorem. However, here we present that a more precise
algebraic study of the inner limit shows that the exact inequality Vi ≤ Bi ≤ V̄i does
hold. We have

− (i− 1)2 > −i2, (3.7)

for 1 ≤ i ≤ n.
Adding n2 on both sides of the inequality (3.7), we get

n2 − (i− 1)2 ≥ n2 − i2. (3.8)

Multiplying both sides of the inequality (3.8) by (n2 − i2) (note that n2 − i2 > 0),
we obtain (

n2 − i2
) [
n2 − (i− 1)2

]
≥
(
n2 − i2

)2
,√

(n2 − i2) [n2 − (i− 1)2] ≥ n2 − i2. (3.9)

The other bound calculation is similar: multiplying both sides of the inequality (3.8)
by the positive value [n2 − (i− 1)2], we get[

n2 − (i− 1)2
]2
>
(
n2 − i2

) [
n2 − (i− 1)2

)
],√

(n2 − i2) [n2 − (i− 1)2] < n2 − (i− 1)2. (3.10)
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Note that since i ≤ n, the inequality (3.10) is easily shown to be strict.
From the inequalities (3.9) and (3.10), we have

1

n3

n∑
i=1

(
n2 − i2

)
≤ 1

n3

n∑
i=1

√
(n2 − i2) [n2 − (i− 1)2] <

1

n3

n∑
i=1

[
n2 − (i− 1)2

]
. (3.11)

Using

lim
n→∞

1

n3

n∑
i=1

(
n2 − i2

)
= lim

n→∞

1

n3

n∑
i=1

[
n2 − (i− 1)2

]
=

2

3
, (3.12)

shown in Section 2, the inequality (3.11) allows the usage of the squeeze theorem, and
we conclude

lim
n→∞

1

n3

n∑
i=1

√
(n2 − i2) [n2 − (i− 1)2] =

2

3
.

3.3 Generalizing the limit (3.1)

The path we have followed allows us to apply the squeeze theorem for the limit

lim
n→∞

1

nk+1

n∑
i=1

√
(nk − ik) [nk − (i− 1)k] =

k

k + 1
,

which generalizes the limit (3.1), but in this case we do not have any simple geometric
interpretation that facilitates the computation of the limit. The key tools used to apply
the squeeze theorem to compute the limit (3.1) were:

• The inequalities (3.11).

• The equality of the limits in (3.12), whose computation was made possible by the
closed formula for the sum of the squares of the first n natural numbers.

The generalization of (3.11) is a direct adaptation of the proof using algebraic
bounds. What we want to emphasize is that to compute the limits that generalize
(3.12), we are introduced to the rich world of closed formulas for the sum powers [25]
and Bernoulli numbers [21]. We describe the bare minimum needed for conducting the
computations, but there is much more to be explored in this area.

Following Scharlau and Opolka [21], we define the Bernoulli numbers by the recur-
rence B0 = 1 and

Bi =
i−1∑
s=0

Bs
1

s!

i!

(i− s+ 1)!
.
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The property of the Bernoulli numbers that we use is that the sum of k-th powers
of the first n− 1 integers,

Sk(n) = 1k + 2k + · · ·+ (n− 1)k =
n−1∑
i=1

ik,

can be expressed as a polynomial in n of degree k+1, whose coefficients can be expressed
in terms of Bernoulli numbers by

Sk(n) =
1

k + 1

k∑
j=0

(
k + 1
j + 1

)
Bk−jn

j+1.

Proposition 3.1. Let i, n and k be positive integers, with k ≥ 2. Then

lim
n→∞

1

nk+1

n∑
i=1

√
(nk − ik) [nk − (i− 1)k] =

k

k + 1
.

Proof. The first step of the proof are the inequalities

1

nk+1

n∑
i=1

(
nk − ik

)
<

1

nk+1

n∑
i=1

√
(nk − ik) [nk − (i− 1)k],

1

nk+1

n∑
i=1

√
(nk − ik) [nk − (i− 1)k] <

1

nk+1

n∑
i=1

[
nk − (i− 1)k

]
.

To prove these inequalities, we proceed exactly as in the case of algebraic bounds,
simply by replacing 2 with k everywhere. The nice part is then the outer limits, i.e. we
want to show that

lim
n→∞

1

nk+1

n∑
i=1

(
nk − ik

)
= lim

n→∞

1

nk+1

n∑
i=1

[
nk − (i− 1)k

]
=

k

k + 1
.

In addition, we want to apply the squeeze theorem. For that, we know

1

nk+1

n∑
i=1

(
nk − ik

)
=

1

nk+1

n∑
i=1

nk − 1

nk+1

n∑
i=1

ik,

1

nk+1

n∑
i=1

(
nk − ik

)
=

1

nk+1
nnk − 1

nk+1

n∑
i=1

ik = 1− 1

nk+1

n∑
i=1

ik.
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A way to show that
1

nk+1

n∑
i=1

ik =
1

k + 1

is to use the expression of the sum
n∑

i=1

ik in terms of the Bernoulli numbers, i.e.

n∑
i=1

ik =
1

k + 1

k∑
j=0

(
k + 1
j + 1

)
Bk−j(n+ 1)j+1.

Therefore,

lim
n→∞

1

nk+1

n∑
i=1

ik = lim
n→∞

1

nk+1

1

k + 1

k∑
j=0

(
k + 1
j + 1

)
Bk−j(n+ 1)j+1,

lim
n→∞

1

nk+1

n∑
i=1

ik =
1

k + 1
lim
n→∞

k∑
j=0

(
k + 1
j + 1

)
Bk−j

(n+ 1)j+1

nk+1
=

1

k + 1
, (3.13)

lim
n→∞

1

nk+1

n∑
i=1

(
nk − ik

)
= lim

n→∞

(
1− 1

nk+1

n∑
i=1

ik

)
= 1− 1

k + 1
=

k

k + 1
.

The only term that survives the limit operation in (3.13) is the last. Therefore, we
should know only the first Bernoulli number, whose combinatorics are much easier to
grasp.

To prove

lim
n→∞

1

nk+1

n∑
i=1

[
nk − (i− 1)k

]
=

k

k + 1
,

we first proceed in the following way:

1

nk+1

n∑
i=1

[
nk − (i− 1)k

]
=

1

nk+1

n∑
i=1

nk − 1

nk+1

n∑
i=1

(i− 1)k;

1

nk+1

n∑
i=1

[
nk − (i− 1)k

]
=

1

nk+1
nnk − 1

nk+1

n∑
i=1

(i− 1)k = 1− 1

nk+1

n∑
i=1

(i− 1)k.

Again this computation benefit from the change of variable j = i− 1 and we get

n∑
i=1

(i− 1)k =

(
n∑

j=1

jk

)
− nk.
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Finally, we conclude

lim
n→∞

1

nk+1

n∑
i=1

[
nk − (i− 1)k

]
= lim

n→∞

[
1− 1

nk+1

(
n∑

j=1

jk

)
− 1

n

]
=

k

k + 1
.

4 Discussion

Our study showed that, to prove the volume of the sphere by the exhaustion method
inscribing truncated right cones, we remain dependent on the limits established by the
inscription and circumscription of right cylinders. In this sense, our methodology is not
innovative. However, by computing the limit arising from the inscription of truncated
right cones, we succeed generalized a more complex limit, thus producing a wonderful
example of applied mathematics and evidencing that the calculation of volumes can be
used to contextualize the determination of finite sum limits.

5 Concluding remarks

We expect that this study shows how considering a standard example (the volume of the
sphere via the method of exhaustion by right cylinders) in a way that goes beyond the
treatment usually found in a standard textbook, one can accomplish several valuable
objectives: clarify the conceptual, technical and historical context of mathematical
tools, in this case, the squeeze theorem; intertwine several areas of mathematics around
the example given, in this case, geometry, analysis and combinatorics; motivate the
importance of exploring when studying mathematics.

6 Recommendations

Our work motivates the study of the wonderful world of inequalities, which starting
place can be the book of Niven [17], and the Bernoulli numbers and their associated
combinatorics.
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Appendix

We used the C language code described below to investigate the sum limit

lim
n→∞

1

nk+1

n∑
i=1

√
(nk − ik) [nk − (i− 1)k]. (6.1)

1 #include <windows.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <math.h>

5 int main()

6 {

7 FILE*f=fopen(" serie.txt","w");

8 int i,k=2,n;

9 double sum=0., sumaux =1.0;

10 for(n=2; sumaux !=sum;n++){

11 sumaux=sum;

12 for(i=1;i<=n;i++){

13 sum+=sqrt ((( pow(n,k)-pow(i-1,k))*(pow(n,k)-pow(i,k))));

14 }

15 sum=sum/pow(n,k+1);

16 fprintf(f,"n=%10d sum =%30.18g\n",n,sum);

17 }

18 fclose(f);

19 return 0;

20 }

The Table 1 shows the numerical results for various values of k.

Table 1: Numerical results for the limit (6.1)

k n sum
2 150163 0.66666666649773287 ≈ 2

3

3 75154 0.74999999906868420 ≈ 3
4

4 80684 0.79999999894431617 ≈ 4
5

5 87662 0.83333333222991424 ≈ 5
6

9 97469 0.89999999845799994 ≈ 9
10

1000 Underflow error
Source: The authors.
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